Python Dictionaries¶
Introduction to Dictionary¶
- A dictionary is a collection that stores data in key-value pairs.
- It is ordered (as of Python 3.7), changeable, and does not allow duplicate keys.
- Dictionaries are defined using curly brackets
{}
or thedict()
constructor.
Dictionary Items¶
- Dictionary items are ordered, modifiable, and unique in terms of keys.
- Values can be of any data type: strings, numbers, lists, booleans, or even other dictionaries.
- Items are accessed using key names.
In [ ]:
# Define a dictionary with AI-related fields
ai_dict = {
"framework": "TensorFlow",
"category": "deep learning",
"intensity": "high"
}
# Print the dictionary
print(ai_dict)
# Output: {'framework': 'TensorFlow', 'category': 'deep learning', 'intensity': 'high'}
# Accessing a value using a key
print(ai_dict["framework"]) # Output: TensorFlow
{'framework': 'TensorFlow', 'category': 'deep learning', 'intensity': 'high'} TensorFlow
Handling Duplicate Keys¶
- If a dictionary contains duplicate keys, the last occurrence overwrites the previous ones.
In [ ]:
# Define a dictionary with duplicate keys
ai_model = {
"name": "GPT",
"version": 3,
"version": 4 # Overwrites the previous version key
}
# Print the dictionary
print(ai_model)
# Output: {'name': 'GPT', 'version': 4}
{'name': 'GPT', 'version': 4}
Dictionary Length¶
- Use the
len()
function to get the number of key-value pairs.
In [ ]:
# Define a dictionary
intensity_data = {
"low": 10,
"medium": 50,
"high": 100
}
# Get the length of the dictionary
print(len(intensity_data)) # Output: 3
3
Different Data Types in a Dictionary¶
- Dictionary values can be strings, integers, lists, booleans, or even nested dictionaries.
In [ ]:
# Define a dictionary with mixed data types
ml_dict = {
"algorithm": "Neural Network",
"layers": 5,
"active": True,
"optimizers": ["SGD", "Adam", "RMSprop"]
}
# Print the dictionary
print(ml_dict)
# Output: {'algorithm': 'Neural Network', 'layers': 5, 'active': True, 'optimizers': ['SGD', 'Adam', 'RMSprop']}
{'algorithm': 'Neural Network', 'layers': 5, 'active': True, 'optimizers': ['SGD', 'Adam', 'RMSprop']}
Checking Dictionary Type¶
- Use the
type()
function to verify that an object is a dictionary.
In [ ]:
# Define a dictionary
ai_params = {
"learning_rate": 0.01,
"batch_size": 32,
"epochs": 10
}
# Check the type
print(type(ai_params)) # Output: <class 'dict'>
<class 'dict'>
Converting a Dictionary to a String¶
- The
str()
function converts a dictionary into a printable string.
In [ ]:
# Define a dictionary
dataset_info = {"name": "ImageNet", "classes": 1000}
# Convert dictionary to string
print("Dictionary as String:", str(dataset_info))
# Output: Dictionary as String: {'name': 'ImageNet', 'classes': 1000}
Dictionary as String: {'name': 'ImageNet', 'classes': 1000}
Creating a Dictionary Using the dict()
Constructor¶
- The
dict()
function can be used to create a dictionary.
In [ ]:
# Create a dictionary using dict() constructor
user_info = dict(name="John", age=30, domain="intensity coding")
# Print the dictionary
print(user_info)
# Output: {'name': 'John', 'age': 30, 'domain': 'intensity coding'}
{'name': 'John', 'age': 30, 'domain': 'intensity coding'}
Accessing Dictionary Items in Python¶
Accessing Values Using Keys¶
- Dictionary items can be accessed by referring to their key names inside square brackets
[]
. - Alternatively, the
get()
method can be used to achieve the same result.
In [ ]:
# Define a dictionary with AI-related terms
ai_dict = {
"framework": "TensorFlow",
"category": "deep learning",
"intensity": "high"
}
# Access value using key
x = ai_dict["framework"]
print(x) # Output: TensorFlow
# Access value using get() method
y = ai_dict.get("category")
print(y) # Output: deep learning
TensorFlow deep learning
Retrieving All Keys¶
- The
keys()
method returns a view object containing all the dictionary's keys. - This view is dynamic, meaning changes in the dictionary will be reflected in the keys list.
In [ ]:
# Define a dictionary
ml_model = {
"name": "GPT-4",
"type": "Transformer",
"trained_on": "large dataset"
}
# Get all keys
keys_list = ml_model.keys()
print(keys_list)
# Output: dict_keys(['name', 'type', 'trained_on'])
# Adding a new key-value pair updates the keys list dynamically
ml_model["accuracy"] = 98.5
print(keys_list)
# Output: dict_keys(['name', 'type', 'trained_on', 'accuracy'])
dict_keys(['name', 'type', 'trained_on']) dict_keys(['name', 'type', 'trained_on', 'accuracy'])
Retrieving All Values¶
- The
values()
method returns a view object containing all the dictionary’s values. - Changes in the dictionary will be automatically reflected in the values list.
In [ ]:
# Define a dictionary
dataset_info = {
"name": "ImageNet",
"classes": 1000,
"size": "1.2M images"
}
# Get all values
values_list = dataset_info.values()
print(values_list)
# Output: dict_values(['ImageNet', 1000, '1.2M images'])
# Modifying an existing value updates the values list dynamically
dataset_info["size"] = "1.5M images"
print(values_list)
# Output: dict_values(['ImageNet', 1000, '1.5M images'])
# Adding a new key-value pair updates the values list dynamically
dataset_info["resolution"] = "256x256"
print(values_list)
# Output: dict_values(['ImageNet', 1000, '1.5M images', '256x256'])
dict_values(['ImageNet', 1000, '1.2M images']) dict_values(['ImageNet', 1000, '1.5M images']) dict_values(['ImageNet', 1000, '1.5M images', '256x256'])
Retrieving All Items (Key-Value Pairs)¶
- The
items()
method returns a view object containing each dictionary entry as a tuple. - Changes in the dictionary will be reflected in the items list.
In [ ]:
# Define a dictionary
hyperparams = {
"learning_rate": 0.01,
"batch_size": 32,
"epochs": 10
}
# Get all key-value pairs
items_list = hyperparams.items()
print(items_list)
# Output: dict_items([('learning_rate', 0.01), ('batch_size', 32), ('epochs', 10)])
# Updating a value dynamically updates the items list
hyperparams["epochs"] = 20
print(items_list)
# Output: dict_items([('learning_rate', 0.01), ('batch_size', 32), ('epochs', 20)])
# Adding a new key-value pair updates the items list dynamically
hyperparams["optimizer"] = "Adam"
print(items_list)
# Output: dict_items([('learning_rate', 0.01), ('batch_size', 32), ('epochs', 20), ('optimizer', 'Adam')])
dict_items([('learning_rate', 0.01), ('batch_size', 32), ('epochs', 10)]) dict_items([('learning_rate', 0.01), ('batch_size', 32), ('epochs', 20)]) dict_items([('learning_rate', 0.01), ('batch_size', 32), ('epochs', 20), ('optimizer', 'Adam')])
Checking if a Key Exists¶
- Use the
in
keyword to check whether a key exists in a dictionary.
In [ ]:
# Define a dictionary
model_specs = {
"name": "ResNet",
"layers": 50,
"pretrained": True
}
# Check if a key exists
if "layers" in model_specs:
print("Yes, 'layers' is one of the keys in the model_specs dictionary")
# Output: Yes, 'layers' is one of the keys in the model_specs dictionary
Yes, 'layers' is one of the keys in the model_specs dictionary
Changing Dictionary Items in Python¶
Modifying Values in a Dictionary¶
- You can update the value of a specific key by referring to it directly.
- This allows modifying existing data dynamically.
In [ ]:
# Define a dictionary with AI-related terms
ai_project = {
"name": "Intensity Coding",
"language": "Python",
"year": 2023
}
# Modify the value of an existing key
ai_project["year"] = 2025
print(ai_project)
# Output: {'name': 'Intensity Coding', 'language': 'Python', 'year': 2025}
{'name': 'Intensity Coding', 'language': 'Python', 'year': 2025}
Updating a Dictionary Using update()
¶
- The
update()
method allows updating a dictionary with values from another dictionary or an iterable object containing key-value pairs. - This is useful when updating multiple values at once.
In [ ]:
# Define a dictionary
ml_framework = {
"framework": "TensorFlow",
"version": "2.10",
"status": "stable"
}
# Update dictionary using another dictionary
ml_framework.update({"version": "2.12", "status": "latest"})
print(ml_framework)
# Output: {'framework': 'TensorFlow', 'version': '2.12', 'status': 'latest'}
{'framework': 'TensorFlow', 'version': '2.12', 'status': 'latest'}
Updating Using an Iterable (Tuple of Key-Value Pairs)¶
In [ ]:
# Define a dictionary
dataset = {
"name": "ImageNet",
"classes": 1000,
"size": "1.2M images"
}
# Update dictionary using an iterable (tuple inside a list)
dataset.update([("size", "1.5M images"), ("source", "Intensity Coding")])
print(dataset)
# Output: {'name': 'ImageNet', 'classes': 1000, 'size': '1.5M images', 'source': 'Intensity Coding'}
{'name': 'ImageNet', 'classes': 1000, 'size': '1.5M images', 'source': 'Intensity Coding'}
Adding Items to a Dictionary in Python¶
Adding a New Key-Value Pair¶
- You can add new items to a dictionary by assigning a value to a new key.
- If the key already exists, the value will be updated.
In [ ]:
# Define a dictionary
ai_project = {
"name": "Intensity Coding",
"language": "Python",
"year": 2023
}
# Adding a new key-value pair
ai_project["domain"] = "Machine Learning"
print(ai_project)
# Output: {'name': 'Intensity Coding', 'language': 'Python', 'year': 2023, 'domain': 'Machine Learning'}
{'name': 'Intensity Coding', 'language': 'Python', 'year': 2023, 'domain': 'Machine Learning'}
Updating a Dictionary Using update()
¶
- The
update()
method updates the dictionary with values from another dictionary or an iterable object containing key-value pairs. - If the key already exists, its value is updated; otherwise, the key is added.
In [ ]:
# Define a dictionary
dataset_info = {
"dataset": "ImageNet",
"size": "1.2M images"
}
# Adding a new key-value pair using update()
dataset_info.update({"source": "Intensity Coding", "year": 2025})
print(dataset_info)
# Output: {'dataset': 'ImageNet', 'size': '1.2M images', 'source': 'Intensity Coding', 'year': 2025}
{'dataset': 'ImageNet', 'size': '1.2M images', 'source': 'Intensity Coding', 'year': 2025}
Updating Using an Iterable (Tuple of Key-Value Pairs)¶
In [ ]:
# Define a dictionary
ml_framework = {
"framework": "PyTorch",
"version": "1.12"
}
# Updating with an iterable (list of tuples)
ml_framework.update([("version", "2.0"), ("developer", "Meta")])
print(ml_framework)
# Output: {'framework': 'PyTorch', 'version': '2.0', 'developer': 'Meta'}
{'framework': 'PyTorch', 'version': '2.0', 'developer': 'Meta'}
Removing Items from a Dictionary in Python¶
Python provides multiple methods to remove items from a dictionary:
pop(key)
→ Removes a specified key and returns its value.popitem()
→ Removes the last inserted itemdel
→ Removes a specific key or deletes the dictionary entirely.clear()
→ Empties the dictionary.
Removing a Specific Item Using pop()
¶
- Removes the key-value pair of the specified key.
- If the key does not exist, it raises a
KeyError
.
In [ ]:
# Define a dictionary
ai_project = {
"name": "Intensity Coding",
"language": "Python",
"year": 2023
}
# Remove the "language" key
ai_project.pop("language")
print(ai_project)
# Output: {'name': 'Intensity Coding', 'year': 2023}
{'name': 'Intensity Coding', 'year': 2023}
Removing the Last Inserted Item Using popitem()
¶
- Removes and returns the last added key-value pair.
In [ ]:
# Define a dictionary
dataset_info = {
"dataset": "ImageNet",
"size": "1.2M images",
"source": "Intensity Coding"
}
# Remove the last inserted item
dataset_info.popitem()
print(dataset_info)
# Output: {'dataset': 'ImageNet', 'size': '1.2M images'}
{'dataset': 'ImageNet', 'size': '1.2M images'}
Removing a Specific Item Using del
¶
- The
del
keyword removes an item based on its key.
In [ ]:
# Define a dictionary
ml_framework = {
"framework": "TensorFlow",
"version": "2.8",
"developer": "Google"
}
# Delete the "developer" key
del ml_framework["developer"]
print(ml_framework)
# Output: {'framework': 'TensorFlow', 'version': '2.8'}
{'framework': 'TensorFlow', 'version': '2.8'}
Using del
to Delete the Entire Dictionary¶
In [ ]:
# Define a dictionary
model_params = {
"layers": 5,
"activation": "ReLU",
"optimizer": "Adam"
}
# Delete the entire dictionary
del model_params
# print(model_params) # This will raise a NameError since the dictionary no longer exists.
Clearing a Dictionary Using clear()
¶
- The
clear()
method removes all key-value pairs, leaving an empty dictionary.
In [ ]:
# Define a dictionary
hyperparameters = {
"batch_size": 32,
"learning_rate": 0.001,
"epochs": 50
}
# Clear the dictionary
hyperparameters.clear()
print(hyperparameters)
# Output: {}
{}
Looping Through a Dictionary in Python¶
- When iterating through a dictionary, you can access:
- Keys
- Values
- Key-Value pairs
Looping Through Keys¶
- By default, iterating over a dictionary returns its keys.
In [ ]:
# Define a dictionary
ai_project = {
"name": "Intensity Coding",
"language": "Python",
"year": 2023
}
# Loop through keys
for key in ai_project:
print(key)
# Output:
# name
# language
# year
name language year
Looping Through Values¶
- To iterate over values, use the
.values()
method.
In [ ]:
# Define a dictionary
ml_framework = {
"framework": "TensorFlow",
"version": "2.8",
"developer": "Google"
}
# Loop through values
for value in ml_framework.values():
print(value)
# Output:
# TensorFlow
# 2.8
# Google
TensorFlow 2.8 Google
Looping Through Keys and Accessing Values¶
- You can retrieve values inside the loop by accessing
dict[key]
.
In [ ]:
# Define a dictionary
dataset_info = {
"dataset": "ImageNet",
"size": "1.2M images",
"source": "Intensity Coding"
}
# Loop through dictionary and access values
for key in dataset_info:
print(dataset_info[key])
# Output:
# ImageNet
# 1.2M images
# Intensity Coding
ImageNet 1.2M images Intensity Coding
Looping Through Keys Using .keys()
¶
- The
.keys()
method explicitly returns dictionary keys.
In [ ]:
# Define a dictionary
hyperparameters = {
"batch_size": 32,
"learning_rate": 0.001,
"epochs": 50
}
# Loop through keys
for key in hyperparameters.keys():
print(key)
# Output:
# batch_size
# learning_rate
# epochs
batch_size learning_rate epochs
Looping Through Key-Value Pairs Using .items()
¶
- The
.items()
method returns both keys and values as tuples.
In [ ]:
# Define a dictionary
model_params = {
"layers": 5,
"activation": "ReLU",
"optimizer": "Adam"
}
# Loop through key-value pairs
for key, value in model_params.items():
print(key, ":", value)
# Output:
# layers : 5
# activation : ReLU
# optimizer : Adam
layers : 5 activation : ReLU optimizer : Adam
Copying Dictionaries in Python¶
- When copying a dictionary, it is important to avoid direct assignment (
dict2 = dict1
), as it creates a reference instead of a true copy.
The Problem with Direct Assignment¶
- If you assign one dictionary to another using
=
, both variables point to the same object. Changes made to one will reflect in the other.
In [ ]:
# Define a dictionary
ai_project = {
"name": "Intensity Coding",
"language": "Python",
"year": 2023
}
# Assign directly (creates reference)
new_project = ai_project
# Modify the new dictionary
new_project["year"] = 2025
# Print both dictionaries
print(ai_project)
print(new_project)
# Output:
# {'name': 'Intensity Coding', 'language': 'Python', 'year': 2025}
# {'name': 'Intensity Coding', 'language': 'Python', 'year': 2025}
# Both dictionaries are affected because they refer to the same object.
{'name': 'Intensity Coding', 'language': 'Python', 'year': 2025} {'name': 'Intensity Coding', 'language': 'Python', 'year': 2025}
Using copy()
Method¶
- The
.copy()
method creates a true copy of the dictionary.
In [ ]:
# Define a dictionary
dataset_info = {
"dataset": "ImageNet",
"size": "1.2M images",
"source": "Intensity Coding"
}
# Create a copy using copy()
dataset_copy = dataset_info.copy()
# Modify the copied dictionary
dataset_copy["size"] = "2.0M images"
# Print both dictionaries
print(dataset_info)
print(dataset_copy)
# Output:
# {'dataset': 'ImageNet', 'size': '1.2M images', 'source': 'Intensity Coding'}
# {'dataset': 'ImageNet', 'size': '2.0M images', 'source': 'Intensity Coding'}
# Original dictionary remains unchanged.
{'dataset': 'ImageNet', 'size': '1.2M images', 'source': 'Intensity Coding'} {'dataset': 'ImageNet', 'size': '2.0M images', 'source': 'Intensity Coding'}
Using dict()
Constructor¶
- Another way to copy a dictionary is by using the
dict()
function.
In [ ]:
# Define a dictionary
ml_framework = {
"framework": "TensorFlow",
"version": "2.8",
"developer": "Google"
}
# Create a copy using dict()
framework_copy = dict(ml_framework)
# Modify the copied dictionary
framework_copy["version"] = "3.0"
# Print both dictionaries
print(ml_framework)
print(framework_copy)
# Output:
# {'framework': 'TensorFlow', 'version': '2.8', 'developer': 'Google'}
# {'framework': 'TensorFlow', 'version': '3.0', 'developer': 'Google'}
# Original dictionary remains unchanged.
{'framework': 'TensorFlow', 'version': '2.8', 'developer': 'Google'} {'framework': 'TensorFlow', 'version': '3.0', 'developer': 'Google'}
Deep Copy vs. Shallow Copy¶
- The
copy()
anddict()
methods create a shallow copy. - If the dictionary contains nested dictionaries, changes in the nested dictionaries affect both copies.
- To perform a deep copy, use the
copy.deepcopy()
method from thecopy
module.
In [ ]:
import copy
# Define a nested dictionary
model_config = {
"model": "ResNet",
"parameters": {
"layers": 50,
"activation": "ReLU"
}
}
# Create a deep copy
model_copy = copy.deepcopy(model_config)
# Modify the copied dictionary
model_copy["parameters"]["layers"] = 101
# Print both dictionaries
print(model_config)
print(model_copy)
# Output:
# {'model': 'ResNet', 'parameters': {'layers': 50, 'activation': 'ReLU'}}
# {'model': 'ResNet', 'parameters': {'layers': 101, 'activation': 'ReLU'}}
# The original dictionary remains unchanged.
{'model': 'ResNet', 'parameters': {'layers': 50, 'activation': 'ReLU'}} {'model': 'ResNet', 'parameters': {'layers': 101, 'activation': 'ReLU'}}
Nested Dictionaries in Python¶
- A nested dictionary is a dictionary inside another dictionary. It is useful for organizing complex data structures such as configurations, datasets, and hierarchies.
In [ ]:
# Nested dictionary containing AI models
ai_models = {
"model1": {
"name": "GPT-4",
"parameters": 175e9,
"developer": "OpenAI"
},
"model2": {
"name": "BERT",
"parameters": 340e6,
"developer": "Google"
},
"model3": {
"name": "Stable Diffusion",
"parameters": 890e6,
"developer": "Stability AI"
}
}
# Print the dictionary
print(ai_models)
{'model1': {'name': 'GPT-4', 'parameters': 175000000000.0, 'developer': 'OpenAI'}, 'model2': {'name': 'BERT', 'parameters': 340000000.0, 'developer': 'Google'}, 'model3': {'name': 'Stable Diffusion', 'parameters': 890000000.0, 'developer': 'Stability AI'}}
Creating a Nested Dictionary Using Separate Dictionaries¶
- You can also define individual dictionaries first and then combine them.
In [ ]:
# Individual dictionaries for datasets
dataset1 = {
"name": "ImageNet",
"size": "1.2M images",
"source": "Intensity Coding"
}
dataset2 = {
"name": "COCO",
"size": "330K images",
"source": "Microsoft"
}
dataset3 = {
"name": "MNIST",
"size": "60K images",
"source": "Yann LeCun"
}
# Combine into a nested dictionary
datasets = {
"dataset1": dataset1,
"dataset2": dataset2,
"dataset3": dataset3
}
# Print the nested dictionary
print(datasets)
{'dataset1': {'name': 'ImageNet', 'size': '1.2M images', 'source': 'Intensity Coding'}, 'dataset2': {'name': 'COCO', 'size': '330K images', 'source': 'Microsoft'}, 'dataset3': {'name': 'MNIST', 'size': '60K images', 'source': 'Yann LeCun'}}
Accessing Items in Nested Dictionaries¶
- To access values inside a nested dictionary, use multiple square brackets (
[]
).
In [ ]:
# Access the name of model2
print(ai_models["model2"]["name"])
# Output: BERT
# Access the parameter count of model1
print(ai_models["model1"]["parameters"])
# Output: 175000000000.0
BERT 175000000000.0
Modifying Nested Dictionary Values¶
- You can update nested dictionaries just like normal dictionaries.
In [ ]:
# Updating ImageNet dataset size
datasets["dataset1"]["size"] = "1.5M images"
# Print updated dataset info
print(datasets["dataset1"])
{'name': 'ImageNet', 'size': '1.5M images', 'source': 'Intensity Coding'}
Looping Through a Nested Dictionary¶
- To iterate over a nested dictionary, use nested loops.
In [ ]:
for key, model in ai_models.items():
print(f"Model ID: {key}")
for attribute, value in model.items():
print(f" {attribute}: {value}")
print("-" * 30)
# Output:
# Model ID: model1
# name: GPT-4
# parameters: 175000000000.0
# developer: OpenAI
# ------------------------------
# Model ID: model2
# name: BERT
# parameters: 340000000.0
# developer: Google
# ------------------------------
# Model ID: model3
# name: Stable Diffusion
# parameters: 890000000.0
# developer: Stability AI
# ------------------------------
Model ID: model1 name: GPT-4 parameters: 175000000000.0 developer: OpenAI ------------------------------ Model ID: model2 name: BERT parameters: 340000000.0 developer: Google ------------------------------ Model ID: model3 name: Stable Diffusion parameters: 890000000.0 developer: Stability AI ------------------------------
Python Dictionary Methods¶
No | Method | Description |
---|---|---|
1 | clear() |
Deletes all key-value pairs, making the dictionary empty. |
2 | copy() |
Creates and returns a duplicate of the dictionary. |
3 | fromkeys() |
Creates a new dictionary with specified keys, assigning a common default value. |
4 | get() |
Retrieves the value associated with a key; returns None if the key is absent. |
5 | items() |
Returns all dictionary entries as a collection of key-value tuple pairs. |
6 | keys() |
Provides a view containing all the keys in the dictionary. |
7 | pop() |
Removes a key-value pair by key and returns its value. |
8 | popitem() |
Removes and returns the most recently added key-value pair. |
9 | setdefault() |
Returns the value of a key; if missing, inserts it with a specified default. |
10 | update() |
Merges another dictionary or iterable into the existing dictionary, updating keys if they exist. |
11 | values() |
Returns a view object containing all dictionary values. |
1. clear()¶
Point | Description |
---|---|
Use Case | The clear() method removes all key-value pairs from a dictionary, leaving it empty. |
Syntax | dictionary.clear() |
Parameter Values | This method does not accept any parameters. |
Useful Information¶
No. | Point | Description |
---|---|---|
1 | Modifies Original Dictionary | The method empties the dictionary in place instead of returning a new one. |
2 | No Return Value | It does not return anything; it simply clears the dictionary. |
3 | Dictionary Still Exists | The dictionary remains but becomes empty after calling clear() . |
In [ ]:
# Dictionary storing AI model configurations
ai_model_config = {
"model": "Transformer",
"layers": 12,
"learning_rate": 0.001,
"optimizer": "Adam"
}
# Clearing all configurations
ai_model_config.clear()
# Printing the dictionary after clearing
print("AI Model Configurations:", ai_model_config) # Output: AI Model Configurations: {}
AI Model Configurations: {}
2. copy()¶
Point | Description |
---|---|
Use Case | The copy() method creates and returns a shallow copy of a dictionary. |
Syntax | dictionary.copy() |
Parameter Values | This method does not accept any parameters. |
Useful Information¶
No. | Point | Description |
---|---|---|
1 | Shallow Copy | The copied dictionary is independent but contains references to mutable objects. |
2 | Does Not Modify Original | The original dictionary remains unchanged after copying. |
3 | Deep Copy Required for Nested Dictionaries | If the dictionary contains nested structures, use copy.deepcopy() for a deep copy. |
In [ ]:
import copy
# Original dictionary storing AI dataset metadata
dataset_info = {
"name": "ImageNet",
"size": "150GB",
"categories": ["Animals", "Objects", "Scenes"]
}
# Creating a shallow copy
dataset_copy = dataset_info.copy()
# Modifying the copied dictionary
dataset_copy["name"] = "CIFAR-10"
# Printing original and copied dictionaries
print("Original Dataset Info:", dataset_info)
# Output: {'name': 'ImageNet', 'size': '150GB', 'categories': ['Animals', 'Objects', 'Scenes']}
print("Copied Dataset Info:", dataset_copy)
# Output: {'name': 'CIFAR-10', 'size': '150GB', 'categories': ['Animals', 'Objects', 'Scenes']}
Original Dataset Info: {'name': 'ImageNet', 'size': '150GB', 'categories': ['Animals', 'Objects', 'Scenes']} Copied Dataset Info: {'name': 'CIFAR-10', 'size': '150GB', 'categories': ['Animals', 'Objects', 'Scenes']}
3. fromkeys()¶
Point | Description |
---|---|
Use Case | The fromkeys() method creates a new dictionary with the given keys, all assigned to the same specified value. |
Syntax | dict.fromkeys(keys, value) |
| Parameter Values | keys
: Required. An iterable specifying the dictionary keys.
| |value
: Optional. The value assigned to all keys (default is None
). |
Useful Information¶
No. | Point | Description |
---|---|---|
1 | Same Value for All Keys | All keys receive the same value provided. |
2 | Default Value is None |
If the value is not specified, all keys are assigned None . |
3 | Mutable Value Reference | If a mutable object (like a list) is used as the value, all keys share the same reference. |
In [ ]:
# Defining a tuple of parameter names
parameters = ("learning_rate", "batch_size", "epochs")
# Assigning a default value of 0 to all parameters
default_values = 0
model_config = dict.fromkeys(parameters, default_values)
print(model_config)
# Output: {'learning_rate': 0, 'batch_size': 0, 'epochs': 0}
# Example without specifying a default value (assigns None)
default_config = dict.fromkeys(parameters)
print(default_config)
# Output: {'learning_rate': None, 'batch_size': None, 'epochs': None}
{'learning_rate': 0, 'batch_size': 0, 'epochs': 0} {'learning_rate': None, 'batch_size': None, 'epochs': None}
4. get()¶
Point | Description |
---|---|
Use Case | The get() method retrieves the value associated with a specified key in a dictionary. If the key is not found, it returns a default value instead of raising an error. |
Syntax | dictionary.get(keyname, value) |
| Parameter Values | keyname
: Required. The key whose value needs to be fetched.
| | value
: Optional. A default value returned if the key does not exist (default is None
). |
Useful Information¶
No. | Point | Description |
---|---|---|
1 | Avoids Key Errors | Unlike dictionary[key] , get() does not raise a KeyError if the key is missing. |
2 | Allows Default Values | You can specify a default value to return if the key is not found. |
3 | Returns None by Default |
If no default value is provided and the key does not exist, None is returned. |
In [ ]:
# Dictionary representing AI model configurations
model_config = {
"optimizer": "adam",
"learning_rate": 0.001,
"batch_size": 32
}
# Fetching the learning rate
lr = model_config.get("learning_rate")
print(lr)
# Output: 0.001
# Fetching a non-existent key with a default value
dropout = model_config.get("dropout_rate", 0.2)
print(dropout)
# Output: 0.2
# Fetching a key that does not exist without a default value
momentum = model_config.get("momentum")
print(momentum)
# Output: None
0.001 0.2 None
5. items()¶
Point | Description |
---|---|
Use Case | The items() method returns a view object containing all key-value pairs of a dictionary as tuples. This view object dynamically reflects changes to the dictionary. |
Syntax | dictionary.items() |
Parameter Values | No parameters. |
No. | Point | Description |
---|---|---|
1 | Returns a View Object | The returned view object reflects real-time changes made to the dictionary. |
2 | Contains Tuples | The key-value pairs are returned as a list of tuples. |
3 | Useful for Iteration | The items() method is commonly used for iterating over dictionary elements. |
In [ ]:
# Dictionary representing a machine learning model's parameters
model_params = {
"optimizer": "adam",
"learning_rate": 0.001,
"batch_size": 32
}
# Retrieving all key-value pairs as tuples
params_view = model_params.items()
print(params_view)
# Output: dict_items([('optimizer', 'adam'), ('learning_rate', 0.001), ('batch_size', 32)])
# Modifying the dictionary after calling items()
model_params["learning_rate"] = 0.002
print(params_view)
# Output: dict_items([('optimizer', 'adam'), ('learning_rate', 0.002), ('batch_size', 32)])
dict_items([('optimizer', 'adam'), ('learning_rate', 0.001), ('batch_size', 32)]) dict_items([('optimizer', 'adam'), ('learning_rate', 0.002), ('batch_size', 32)])
6. keys()¶
Point | Description |
---|---|
Use Case | The keys() method returns a view object containing all dictionary keys. This view dynamically updates when the dictionary is modified. |
Syntax | dictionary.keys() |
Parameter Values | No parameters. |
Useful Information¶
No. | Point | Description |
---|---|---|
1 | Returns a View Object | The returned object reflects any real-time changes made to the dictionary. |
2 | Contains Only Keys | It provides access to dictionary keys without values. |
3 | Useful for Iteration | Commonly used for looping over dictionary keys. |
In [ ]:
# Dictionary representing a dataset's features
dataset_features = {
"feature_1": "age",
"feature_2": "height",
"feature_3": "weight"
}
# Retrieving dictionary keys
keys_view = dataset_features.keys()
print(keys_view)
# Output: dict_keys(['feature_1', 'feature_2', 'feature_3'])
# Modifying the dictionary after calling keys()
dataset_features["feature_4"] = "blood_pressure"
print(keys_view)
# Output: dict_keys(['feature_1', 'feature_2', 'feature_3', 'feature_4'])
dict_keys(['feature_1', 'feature_2', 'feature_3']) dict_keys(['feature_1', 'feature_2', 'feature_3', 'feature_4'])
7. pop()¶
Point | Description |
---|---|
Use Case | The pop() method removes a specified key-value pair from a dictionary and returns the value of the removed item. |
Syntax | dictionary.pop(keyname, defaultvalue) |
Parameter Values | keyname : (Required) The key of the item to remove. |
defaultvalue : (Optional) Value to return if the key does not exist. If omitted and the key is missing, a KeyError is raised. |
Useful Information¶
No. | Point | Description |
---|---|---|
1 | Removes a Specific Item | Deletes the key-value pair and returns the value of the removed item. |
2 | Raises an Error if Key is Missing | If the key is not found and no default value is provided, a KeyError is raised. |
3 | Default Value Prevents Errors | Supplying a default value avoids errors when the key does not exist. |
In [ ]:
# Dictionary representing a dataset with model details
model_info = {
"model_name": "NeuralNet",
"accuracy": 92.5,
"parameters": 150000
}
# Removing a key and displaying the updated dictionary
model_info.pop("accuracy")
print(model_info)
# Output: {'model_name': 'NeuralNet', 'parameters': 150000}
# Removing a key and storing the removed value
removed_value = model_info.pop("parameters")
print(removed_value)
# Output: 150000
# Attempting to remove a non-existent key with a default value
default_output = model_info.pop("layers", "Not Available")
print(default_output)
# Output: Not Available
{'model_name': 'NeuralNet', 'parameters': 150000} 150000 Not Available
8. popitem()¶
Point | Description |
---|---|
Use Case | The popitem() method removes and returns the last inserted key-value pair from a dictionary as a tuple. |
Syntax | dictionary.popitem() |
Parameter Values | No parameters. |
Useful Information¶
No. | Point | Description |
---|---|---|
1 | Removes the Last Inserted Item | From Python 3.7+, it removes the last added key-value pair. Before Python 3.7, it removed a random item. |
2 | Returns a Tuple | The removed key-value pair is returned as a tuple (key, value) . |
3 | Raises an Error if Empty | If the dictionary is empty, calling popitem() results in a KeyError . |
In [ ]:
# Dictionary representing dataset metadata
dataset_info = {
"dataset_name": "ImageNet",
"num_samples": 1000000,
"num_classes": 1000
}
# Removing the last inserted item
dataset_info.popitem()
print(dataset_info)
# Output: {'dataset_name': 'ImageNet', 'num_samples': 1000000}
# Removing another item and storing the removed key-value pair
removed_entry = dataset_info.popitem()
print(removed_entry)
# Output: ('num_samples', 1000000)
# Attempting to pop from an empty dictionary raises an error
dataset_info.clear() # Empty the dictionary
# dataset_info.popitem() # Uncommenting this line will raise KeyError
{'dataset_name': 'ImageNet', 'num_samples': 1000000} ('num_samples', 1000000)
9. setdefault()¶
Point | Description |
---|---|
Use Case | The setdefault() method retrieves the value of a specified key. If the key does not exist, it inserts the key with a given default value and returns it. |
Syntax | dictionary.setdefault(keyname, value) |
Parameter Values | keyname : Required. The key whose value needs to be retrieved or inserted. |
value : Optional. If the key does not exist, this value is assigned. Default is None . |
Useful Information¶
No. | Point | Description |
---|---|---|
1 | No Effect on Existing Keys | If the key is present, setdefault() does not change its value. |
2 | Inserts Key if Missing | If the key does not exist, it is added with the specified default value. |
3 | Returns the Key's Value | Whether the key exists or not, setdefault() always returns the key’s value. |
In [ ]:
# Dictionary representing machine learning model settings
model_config = {
"optimizer": "Adam",
"learning_rate": 0.001,
"epochs": 10
}
# Retrieving an existing key's value
optimizer = model_config.setdefault("optimizer", "SGD")
print(optimizer)
# Output: Adam (existing value remains unchanged)
# Setting a default value for a missing key
batch_size = model_config.setdefault("batch_size", 32)
print(batch_size)
# Output: 32 (since "batch_size" was missing, it is now added)
# Printing the updated dictionary
print(model_config)
# Output: {'optimizer': 'Adam', 'learning_rate': 0.001, 'epochs': 10, 'batch_size': 32}
Adam 32 {'optimizer': 'Adam', 'learning_rate': 0.001, 'epochs': 10, 'batch_size': 32}
10. update()¶
Point | Description |
---|---|
Use Case | The update() method adds key-value pairs from another dictionary or iterable object to an existing dictionary. If a key already exists, its value is updated. |
Syntax | dictionary.update(iterable) |
Parameter Values | iterable : A dictionary or an iterable object with key-value pairs to be inserted into the dictionary. |
Useful Information¶
No. | Point | Description |
---|---|---|
1 | Updates Existing Keys | If a key exists, update() changes its value. |
2 | Adds New Key-Value Pairs | If a key does not exist, it is added to the dictionary. |
3 | Accepts Different Data Types | The method accepts dictionaries, lists of tuples, and other iterables containing key-value pairs. |
4 | No Return Value | update() modifies the dictionary in place and does not return anything. |
In [ ]:
# Dictionary representing model hyperparameters
model_params = {
"optimizer": "Adam",
"learning_rate": 0.001,
"epochs": 10
}
# Updating with new hyperparameters
model_params.update({"batch_size": 32, "learning_rate": 0.0005})
print(model_params)
# Output: {'optimizer': 'Adam', 'learning_rate': 0.0005, 'epochs': 10, 'batch_size': 32}
# Updating using an iterable (list of tuples)
new_params = [("dropout", 0.3), ("activation", "relu")]
model_params.update(new_params)
print(model_params)
# Output: {'optimizer': 'Adam', 'learning_rate': 0.0005, 'epochs': 10, 'batch_size': 32, 'dropout': 0.3, 'activation': 'relu'}
{'optimizer': 'Adam', 'learning_rate': 0.0005, 'epochs': 10, 'batch_size': 32} {'optimizer': 'Adam', 'learning_rate': 0.0005, 'epochs': 10, 'batch_size': 32, 'dropout': 0.3, 'activation': 'relu'}
11. values()¶
Point | Description |
---|---|
Use Case | The values() method returns a view object containing all values in the dictionary. Any updates to the dictionary reflect in this view. |
Syntax | dictionary.values() |
Parameter Values | No parameters. |
Useful Information¶
No. | Point | Description |
---|---|---|
1 | Dynamic View | The returned object reflects dictionary updates in real time. |
2 | Not a List | The result is a dictionary view, but can be converted to a list using list(dictionary.values()) . |
3 | No Return Modification | The view only allows reading values, not modifying them directly. |
In [ ]:
# Dictionary representing hyperparameters
model_params = {
"optimizer": "Adam",
"learning_rate": 0.001,
"epochs": 10
}
# Getting values
param_values = model_params.values()
print(param_values)
# Output: dict_values(['Adam', 0.001, 10])
# Updating a dictionary value
model_params["learning_rate"] = 0.0005
print(param_values)
# Output: dict_values(['Adam', 0.0005, 10]) -> Reflects the change
dict_values(['Adam', 0.001, 10]) dict_values(['Adam', 0.0005, 10])