Python JSON (JavaScript Object Notation)¶
Introduction to JSON in Python¶
- JSON (JavaScript Object Notation) is a lightweight format for storing and exchanging data.
- Python provides a built-in
json
module for working with JSON. - JSON is widely used in web applications, APIs, and data exchange.
Parsing JSON: Convert JSON to Python¶
- The
json.loads()
method converts a JSON-formatted string into a Python dictionary.
In [1]:
import json
# JSON data as a string
json_data = '{ "name": "Alice", "age": 25, "city": "London"}'
# Convert JSON string to Python dictionary
python_dict = json.loads(json_data)
# Access values from the dictionary
print(python_dict["name"]) # Output: Alice
print(python_dict["age"]) # Output: 25
Alice 25
Converting Python Objects to JSON¶
- The
json.dumps()
method converts Python objects into a JSON string. - Supported Python data types for conversion:
dict
,list
,tuple
,str
,int
,float
,bool
,None
In [2]:
import json
# Python dictionary
data = {
"name": "Alice",
"age": 25,
"city": "London"
}
# Convert to JSON string
json_string = json.dumps(data)
print(json_string) # Output: {"name": "Alice", "age": 25, "city": "London"}
{"name": "Alice", "age": 25, "city": "London"}
Example Conversions¶
In [3]:
print(json.dumps({"language": "Python", "version": 3.10})) # Dictionary to JSON
print(json.dumps(["ML", "AI", "Deep Learning"])) # List to JSON
print(json.dumps(("NLP", "Computer Vision"))) # Tuple to JSON
print(json.dumps(42)) # Integer to JSON
print(json.dumps(19.99)) # Float to JSON
print(json.dumps(True)) # Boolean to JSON
print(json.dumps(None)) # None to JSON
{"language": "Python", "version": 3.1} ["ML", "AI", "Deep Learning"] ["NLP", "Computer Vision"] 42 19.99 true null
Python to JSON Mapping¶
Python Data Type | JSON Equivalent |
---|---|
dict |
Object |
list |
Array |
tuple |
Array |
str |
String |
int |
Number |
float |
Number |
True |
true |
False |
false |
None |
null |
Working with Complex JSON Data¶
- JSON can store nested data structures like lists and dictionaries.
In [4]:
import json
# Complex Python data structure
user_profile = {
"name": "Alice",
"age": 25,
"skills": ["Python", "Machine Learning"],
"education": {
"degree": "MSc",
"field": "Computer Science"
},
"certified": True
}
# Convert Python dictionary to JSON
json_data = json.dumps(user_profile)
print(json_data)
{"name": "Alice", "age": 25, "skills": ["Python", "Machine Learning"], "education": {"degree": "MSc", "field": "Computer Science"}, "certified": true}
Formatting JSON Output¶
- JSON output can be formatted for readability using
indent
.
In [5]:
import json
# Nested dictionary
data = {
"name": "Alice",
"age": 25,
"skills": ["Python", "Data Science"],
"projects": [
{"title": "NLP Model", "status": "Completed"},
{"title": "Computer Vision", "status": "In Progress"}
]
}
# Convert to JSON with indentation
formatted_json = json.dumps(data, indent=4)
print(formatted_json)
### **Output:**
# {
# "name": "Alice",
# "age": 25,
# "skills": [
# "Python",
# "Data Science"
# ],
# "projects": [
# {
# "title": "NLP Model",
# "status": "Completed"
# },
# {
# "title": "Computer Vision",
# "status": "In Progress"
# }
# ]
# }
{ "name": "Alice", "age": 25, "skills": [ "Python", "Data Science" ], "projects": [ { "title": "NLP Model", "status": "Completed" }, { "title": "Computer Vision", "status": "In Progress" } ] }
Customizing JSON Separators¶
- The default separator in JSON output is
", "
for items and": "
for key-value pairs. - We can change the separators for a more compact output.
In [7]:
import json
data = {
"name": "Alice",
"age": 25,
"skills": ["Python", "Data Science"]
}
# Custom separator
compact_json = json.dumps(data, indent=4, separators=(". ", " = "))
print(compact_json)
### **Output:**
# {
# "name" = "Alice".
# "age" = 25.
# "skills" = [
# "Python".
# "Data Science"
# ]
# }
{ "name" = "Alice". "age" = 25. "skills" = [ "Python". "Data Science" ] }
Sorting Keys in JSON Output¶
- The
sort_keys=True
parameter sorts the dictionary keys alphabetically.
In [8]:
import json
data = {
"age": 25,
"name": "Alice",
"city": "London"
}
# Convert to JSON with sorted keys
sorted_json = json.dumps(data, indent=4, sort_keys=True)
print(sorted_json)
### **Output:**
# {
# "age": 25,
# "city": "London",
# "name": "Alice"
# }
{ "age": 25, "city": "London", "name": "Alice" }